
Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

20

Built-In Types

2 Built-In Types
2.1 Simple and Structured Types

Virtually every programming language has implementations of several ADTs built into it. We distinguish
two sorts of built-in types:

Simple types: The values of the carrier set are atomic, that is, they cannot be divided into
parts. Common examples of simple types are integer, Boolean, character, floating point, and
enumerations. Some languages also provide string as a built-in simple type.

Structured types: The values of the carrier set are not atomic, consisting instead of several
atomic values arranged in some way. Common examples of structured types are arrays, records,
classes, and sets. Some languages treat strings as a built-in structured types.

Note that both simple and structured types are implementations of ADTs, it is simply a question of how
the programming language treats the values of the carrier set of the ADT in its implementation. The
remainder of this chapter considers some Ruby simple and structured types to illustrate these ideas.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

21

Built-In Types

2.2 Types in Ruby

Ruby is a pure object-oriented language, meaning that all types in Ruby are classes, and every value
in a Ruby program is an instance of a class. This has several consequences for the way values can be
manipulated that may seem odd to programmers familiar with languages that have values that are
not objects. For example, values in Ruby respond to method calls: The expressions 142.even? and
“Hello”.empty? are perfectly legitimate (the first expression is true and the second is false).

Ruby has many built-in types because it has many built-in classes. Here we only consider a few Ruby
types to illustrate how they realize ADTs.

2.3 Symbol: A Simple Type in Ruby

Ruby has many simple types, including numeric classes such as Integer, Fixnum, Bignum, Float,
BigDecimal, Rational, and Complex, textual classes such as String, Symbol, and Regexp,
and many more. One unusual and interesting simple type is Symbol, which we consider in more detail
to illustrate how a type in a programming language realizes an ADT.

Ruby has a String class whose instances are mutable sequences of Unicode characters. Symbol class
instances are character sequences that are not mutable, and consequently the Symbol class has far
fewer operations than the String class. Ruby in effect has implementations of two String ADTs—we
consider the simpler one, calling it the Symbol ADT for purposes of this discussion.

The carrier set of the Symbol ADT is the set of all finite sequences of characters over the Unicode
characters set (Unicode is a standard character set of over 110,000 characters from 93 scripts). Hence
this carrier set includes the string of zero characters (the empty string), all strings of one character, all
strings of two characters, and so forth. This carrier set is infinite.

The operations of the Symbol ADT are the following.

a==b—returns true if and only if symbols a and b are identical.

a<=b—returns true if and only if either symbols a and b are identical, or symbol a precedes
symbol b in Unicode collating sequence order.

a<b—returns true if and only if symbol a precedes symbol b in Unicode collating sequence order.

empty?(a)—returns true if and only if symbol a is the empty symbol.

a=~b—returns the index of the first character of the first portion of symbol a that matches the
regular expression b. If there is no match, the result is undefined.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

22

Built-In Types

caseCompare(a,b)—compares symbols a and b, ignoring case, and returns -1 if a<b, 0 if a==b,
and 1 otherwise.

length(a)—returns the number of characters in symbol a.

capitalize(a)—returns the symbol generated from a by making its first character uppercase and
making its remaining characters lowercase.

downcase(a) —returns the symbol generated from a by making all characters in a lowercase.

upcase(a)—returns the symbol generated from a by making all characters in a uppercase.

swapcase(a)—returns the symbol generated from a by making all lowercase characters in a
uppercase and all uppercase characters in a lowercase.

charAt(a,i)—returns the one character symbol consisting of the character of symbol a at index
i (counting from 0); the result is undefined if i is less than 0 or greater than or equal to the
length of a.

charAt(a,i,c)—returns the substring of symbol a beginning at index i (counting from 0), and
continuing for c characters; the result is undefined if i is less than 0 or greater than or equal to
the length of a, or if c is negative. If i+c is greater than the length of a, the result is the suffix
of symbol a beginning at index i.

succ(a)—returns the symbol that is the successor of symbol a. If a contains characters or letters,
the successor of a is found by incrementing the right-most letter or digit according to the
Unicode collating sequence, carrying leftward if necessary when the last digit or letter in the
collating sequence is encountered. If a has no letters or digits, then the right-most character
of a is incremented, with carries to the left as necessary.

toString(a)—returns a string whose characters correspond to the characters of symbol a.

toSymbol(a)—returns a symbol whose characters correspond to the characters of string a.

The Symbol ADT has no concatenation operations, but assuming we have a full-featured String ADT,
symbols can be concatenated by converting them to strings, concatenating the strings, then converting
the result back to a symbol. Similarly, String ADT operations can be used to do other manipulations.
This explains why the Symbol ADT has a rather odd mix of operations: The Symbol ADT models the
Symbol class in Ruby, and this class only has operations often used for Symbols, with most string
operations appearing in the String class.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

23

Built-In Types

The Ruby implementation of the Symbol ADT, as mentioned, hinges on making Symbol class instances
immutable, which corresponds to the relative lack of operations in the Symbol ADT. Symbol values are
stored in the Ruby interpreter’s symbol table, which guarantees that they cannot be changed. This also
guarantees that only a single Symbol instance will exist corresponding to any sequence of characters,
which is an important characteristic of the Ruby Symbol class that is not required by the Symbol ADT,
and distinguishes it from the String class.

All Symbol ADT operations listed above are implemented in the Symbol class, except toSymbol(), which
is implemented in classes (such as String), that can generate a Symbol instance. When a result is
undefined in the ADT, the result of the corresponding Symbol class method is nil. The names are
sometimes different, following Ruby conventions; for example, toString() in the ADT becomes to_s()
in Ruby, and charAt() in the ADT is []() in Ruby.

Ruby is written in C, so carrier set members (that is, individual symbols) are implemented as fixed-size arrays
of characters (which is how C represents strings) inside the Symbol class. The empty symbol is an array of
length 0, symbols of length one are arrays with a single element, symbols of length two are arrays with two
elements, and so forth. Symbol class operations are either written to use these arrays directly, or to generate
a String instance, do the operation on the string, and convert the result back into a Symbol instance.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

24

Built-In Types

2.4 Range: A Structured Type in Ruby

Ruby has a several structured types, including arrays, hashes, sets, classes, streams, and ranges. In this
section we will only discuss ranges briefly as an example of a structured type.

The Range of T ADT represents a set of values of type T (called the base type) between two extremes.
The start value is a value of type T that sets the lower bound of a range, and the end value is a value of
type T that sets the upper bound of a range. The range itself is the set of values of type T between the
lower and upper bounds. For example, the Range of Integers from 1 to 10 inclusive is the set of values
{1, 2, 3, …, 10}.

A range can be inclusive, meaning that it includes the end value, or exclusive, meaning that it does not
include the end value. Inclusive ranges are written with two dots between the extremes, and exclusive
ranges with three dots. Hence the Range of Integers from 1 to 10 inclusive is written 1…10, and the
Range of Integers from 1 to 10 exclusive (the set {1, 2, 3, …, 9}), is written 1…10.

A type can be a range base type only if it supports order comparisons. For example, the Integer, Real,
and String types support order comparisons and so may be range base types, but Sets and Arrays do
not, so they cannot be range base types.

The carrier set of a Range of T is the set of all sets of values v ∈ T such that for some start value s ∈ T
and end value e ∈ T, either s ≤ v and v ≤ e (the inclusive ranges), or s ≤ v and

v < s (the exclusive ranges), plus the empty set. For example, the carrier set of the Range of Integer is
the set of all sequences of contiguous integers. The carrier set of the Range of Real is the set of all sets
of real number greater than or equal to a given number, and either less than or equal to another, or less
than another. These sets are called intervals in mathematics.

The operations of the Range of T ADT includes the following, where a, b ∈ T and r and s are values of
Range of T:

a…b—returns a range value (an element of the carrier set) consisting of all v ∈ T such that
a ≤ v and v ≤ b.

a…b—returns a range value (an element of the carrier set) consisting of all.

v ∈ T such that a ≤ v and v < b.

r==s—returns true if and only if r and s have the same base type, start and end values, and are
either both inclusive or both exclusive ranges.

min(r)—returns the smallest value in r. The result is undefined if r is the empty range.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

25

Built-In Types

max(r)—returns the largest value in r. The result is undefined if r has no largest value (for
example, the Range of Real 0…3 has no largest value because there is no largest Real number
less than 3).

cover?(r, x)—returns true if and only if x ∈ r.

The Range of T ADT is a structured type because the values in its carrier set are composed of values of
some other type, in this case, sets of value of the base type T.

Ruby implements the Range of T ADT in its Range class. Elements of the carrier set are represented
in Range instances by recording internally the type, start, and end values of the range, along with an
indication of whether the range is inclusive or exclusive. Ruby implements all the operations above,
returning nil when the ADT operations are undefined. It is quite easy to see how to implement these
operations given the representation elements of the carrier set. In addition, the Range class provides
operations for accessing the begin and end values defining the range, which are easily accessible because
they are recorded. Finally, the Range class has an include?()operation that tests range membership
by stepping through the values of the range from start value to end value when the range is non-numeric.
This gives slightly different results from cover?()in some cases (such as with String instances).

2.5 Review Questions

1. What is the difference between a simple and a structured type?
2. What is a pure object-oriented language?
3. Name two ways that Symbol instances differ from String instances in Ruby.
4. Is String a simple or structured type in Ruby? Explain.
5. List the carrier set of Range of {1, 2, 3} (inclusive). In this type, what values are 1‥1, 2‥1,

and 1…3? What is max(1…3)?

2.6 Exercises

1. Choose a language that you know well and list its simple and structures types.
2. Choose a language that you know well and compare its simple and structured types to those

of Ruby. Does one language have a type that is simple while the corresponding type in the
other language is structured? Which language has more simple types or more structured
types?

3. Every Ruby type is a class, and every Ruby value is an instance of a class. What advantage
and disadvantages do you see with this approach?

4. Write pseudocode to implement the cover?() operation for the Range class in Ruby.
5. Give an example of a Ruby String range r and String instance v such that

r.cover?(v) and r.include?(v) differ.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

26

Built-In Types

2.7 Review Question Answers

1. The values of a simple type cannot be divided into parts, while the values of a structured
type can be. For example, the values of the Integer type in Ruby cannot be broken into
parts, while the values of a Range in Ruby can be (the parts are the individual elements of
the ranges).

2. A pure object-oriented language is one whose types are all classes. Java and C++, for
example, are not pure object-oriented languages because they include primitive data types,
such as int, float, and char, that are not classes. Smalltalk and Ruby are pure object-
oriented languages because they have no such types.

3. Symbol instances in Ruby are immutable while String instances are mutable. Symbol
instances consisting of a particular sequence of characters are unique, while there may be
arbitrarily many String instances with the same sequence of characters.

4. String is a simple type in Ruby because strings are not composed of other values—in
Ruby there is no character type, so a String value cannot be broken down into parts
composed of characters. If s is a String instance, then s[0] is not a character, but
another String instance.

5. The carrier set of Range of {1, 2, 3} is { {}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3} }. The value 1‥1
is {1}, the value 2‥1 is {}, and the value 1…3 is {1, 2}, and max(1…3) is 2.

Enhance your career opportunities
We offer practical, industry-relevant undergraduate and postgraduate degrees in central London

› Accounting and finance › Global banking and finance
› Business, management and leadership › Luxury brand management
› Oil and gas trade management › Media communications and marketing

Contact us to arrange a visit
Apply direct for January or September entry

T +44 (0)20 7487 7505 E exrel@regents.ac.uk W regents.ac.uk

http://bookboon.com/
http://bookboon.com/count/advert/10a6ab04-ac0d-4b6b-a275-a2d2009406fa

